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The preparation of thiophene ethers generally requires forcing conditions thus limiting the choice of alkyl
substituent. Herein, we report the first successful generally applicable conditions for the selective
O-alkylation of 2(5H)-thiophenone.
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During recent years, the pharmaceutical industry has been
investigating new approaches to treat cancer including inhibition
of cell-growth signalling pathways1 and anti-angiogenesis2 as well
as inhibition of DNA synthesis and function.3 We became
interested in targeting thiophene ethers at C-2 having the
bidentate binding bases, 2-amino-6-methylpyridine4 and tetra-
hydronaphthyridine (Fig. 1).5

There are 2 logical possible retrosyntheses of key substructure
1; using Ullman-style chemistry6 from either the corresponding
2-bromo- or 2-iodothiophene precursors and the appropriate alco-
hol; or alkylation from commercially available 2(5H)-thiophenone
with the appropriately functionalised side chain.7

The side chains were prepared by adapting existing literature.
The synthesis of 4 started from commercially available 2-amino-
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Figure 1. Synthons which could g
6-picoline.4 Boc protection followed by alkylation with iodometh-
ane afforded 3. Lithiation followed by carbonylation and reduction
of the ethyl ester afforded 4 in acceptable overall yields. The
synthesis of 7 relied upon a smooth cyclocondensation of
2-amino-3-formylpyridine with acetone in the presence of
L-proline to afford the naphthyridine intermediate which was in
turn reduced (Pd–C/EtOH) and N-protected with a Boc group.5

The intermediate 6 was subjected to similar chemistry as used
for the preparation of 4 to afford 7 in good overall yield (Scheme 1).

The general method to synthesise thiophene ethers at the a
position is to use Ullman-style approaches.6 However, all attempts
to apply Ullman-style approaches,7 including recent milder condi-
tions,8 even from aryltrifluoroborate precursors,9 and palladium-
catalysed alternatives10 only afforded traces of product. The
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Table 1
Selected results from the Mitsunobu alkylation of 2(5H)-thiophenone by RX15
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Scheme 1. Synthesis of key side chains 4 and 7. Reagents and conditions: (i) Boc–O–Boc, THF, 60 �C, 66%; (ii) Me–I, NaH, DMSO, 82%; (iii) LDA, EtO(CO)OEt, �78 �C to rt, 4 h,
51%; (iv) LiBH4, THF, �10 �C to rt, 95%; (v) L-proline, acetone, EtOH, reflux, 16 h, 74%; (vi) H2, Pd–C, EtOH, rt, 95%; (vii) Boc–O–Boc, LiHDMS, THF, �78 �C to rt, 50%; (viii)
LiHDMS, EtO(CO)OEt, �78 �C to rt, 4 h, 78% and (ix) LiBH4, THF, �10 �C to rt, 75%.
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Scheme 2. Alkylation of thiophenone.
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pyridine ethanol-based side chains readily eliminate at moderate
to high temperatures under basic conditions to afford the corre-
sponding vinyl pyridine side products, and we could not overcome
this by modifying the conditions (ligand, temperature, copper
source, etc.).

Consequently, we turned our attention to the alkylation of
2(5H)-thiophenone (Scheme 2). From the few relevant references
n conditions Isolated yield (%)

: NaH or K2CO3, THF or DMF, rt to 80 �C —

ded at the end to a stirred mixture of
iophenone, PS–TPP and alcohol at �10 �C to rt

—

-thiophenone added to a suspension ofPS–TPP–O–R
ed by adding alcohol to the PS–betaine intermediate)

49

51

15

on of 2(5H)-thiophenone and alcohol added
ed solution of betaine
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Table 1 (continued)

Entry R X Alkylation conditions Isolated yield (%)
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on this alkylation,7,11,12 one can quickly establish that this is not
generally seen as a preparatively useful way into ethers at the a-
position of thiophene. All the references cited classical alkylation
conditions (alkyl halides in the presence of a mineral base) with
low yields and C-alkylation at C-3 posing the most serious prob-
lems. However, all attempts to apply the most appealing condi-
tions (NaH, mesylate and THF)7 to our case resulted only in
elimination, affording, as in the Ullman trials, the vinylpyridine
as the majority product. Even when the reaction was carried out
with phenol, elimination dominated with little product observed
confirming that classical alkylation methods were not applicable
to our particular side chains.

The pKa of 2(5H)-thiophenone was measured at 10.63,13 sug-
gesting it could be a suitable substrate for milder, more tolerant
Mitsunobu alkylation conditions,14 well documented for favouring
substitution over elimination. However, to our knowledge there is
no reference identifying the Mitsunobu reaction as a suitable an-
swer to this particular problem, although the process is generally
used for alkylations with 4 and 7 of phenolic substrates.4,5 After
a significant amount of process development, we managed to suc-
cessfully apply Mitsunobu conditions to this sensitive alkylation.
The mode of addition of the Mitsunobu reagents was absolutely
critical. If the di-tert-butylazodicarboxylate (DTAD) was not pre-re-
acted with triphenylphosphine (TPP) to form the betaine interme-
diate before 2(5H)-thiophenone was introduced, the reaction failed
resulting in electrophilic substitution at C-3 by DTAD. The best
conditions for readily eliminable side chains involved adding a
solution of the alcohol and 2(5H)-thiophenone in dichloromethane
to a stirred solution of the betaine (pre-formed by adding DTAD to
TPP at �10 �C over a period of 5 min) at �10 �C (acetone/ice).

With the conditions optimised, we decided to apply these to a
broader range of alcohols. Table 1 shows the results obtained from
a selection of alcohols. As mentioned previously, attempts to alkyl-
ate the 2(5H)-thiophenone with the mesylate or chloride of 4 affor-
ded the vinylpyridine by-product and traces of product (entry 1).
The mode of addition of the Mitsunobu reagents had a critical
bearing on the actual yields (entry 2 vs entry 3), whereby the DTAD
needed to be consumed before adding the reactive 2(5H)-thiophe-
none (alkylation conditions A). Moreover, in the case of tetra-
hydronaphthyridine with no N-Boc protection, it was essential to
add the alcohol and 2(5H)-thiophenone at the same time to the
betaine intermediate in order to reduce elimination and maximise
yields (entry 5 vs entry 6, alkylation conditions B). Alcohols con-
taining basic functionality (e.g., entries 9 and 13), secondary alco-
hols (e.g., entries 8, 11, 13, and 16), alcohols serving as protecting
groups (e.g., entry 15) and elimination-prone chiral alcohols (e.g.,
entry 16) can all be transformed in acceptable to excellent overall
yields with this process. During the course of the alkylation, C3-
alkylation is occasionally observed by LCMS but at unsignificant
levels (<5%).

In conclusion, we have discovered a new application of the
Mitsunobu reaction that allows access to acceptable yields of a di-
verse set of thiophene ethers at C-2 otherwise difficult to attain
using existing methodology.
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